Substrate effect on thickness- dependent friction on graphene

نویسندگان

  • Qunyang Li
  • Changgu Lee
  • Robert W. Carpick
  • James Hone
چکیده

Using friction force microscopy, we have investigated the frictional behavior of graphene deposited on various substrates as well as over micro-fabricated wells. Both graphene on SiO2/ Si substrates and graphene freely suspended over the wells showed a trend of increasing frictionwith decreasing number of atomic layers of graphene. However, this trend with thickness was absent for graphene deposited onmica, where the graphene is strongly bonded to the substrate.Measurements together with a mechanics model suggest that mechanical confinement to the substrate plays an important role in the frictional behavior of these atomically thin graphite sheets. Loosely bound or suspended graphene sheets can pucker in the out-of-plane direction due to tip-graphene adhesion. This increases contact area, and also allows further deformation of the graphene when sliding, leading to higher friction. Since thinner samples have lower bending stiffness, the puckering effect and frictional resistance are greater. However, if the graphene is strongly bound to the substrate, the puckering effect will be suppressed and no thickness dependence should be observed. The results can provide potentially useful guidelines in the rational design and use of graphene for nano-mechanical applications, including nano-lubricants and components in microand nanodevices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Thickness and Chemical Reduction of Graphene Oxide on Nanoscale Friction.

The tribological properties of two-dimensional (2D) atomic layers are quite different from three-dimensional continuum materials because of the unique mechanical responses of 2D layers. It is known that friction on graphene shows a remarkable decreasing behavior as the number of layers increases, which is caused by the puckering effect. On other graphene derivatives, such as graphene oxide (GO)...

متن کامل

Effect of surface morphology on friction of graphene on various substrates.

The friction of graphene on various substrates, such as SiO2, h-BN, bulk-like graphene, and mica, was investigated to characterize the adhesion level between graphene and the underlying surface. The friction of graphene on SiO2 decreased with increasing thickness and converged around the penta-layers due to incomplete contact between the two surfaces. However, the friction of graphene on an ato...

متن کامل

Nanoscale interfacial friction and adhesion on supported versus suspended monolayer and multilayer graphene.

Using atomic force microscopy (AFM), supported by semicontinuum numerical simulations, we determine the effect of tip-subsurface van der Waals interactions on nanoscale friction and adhesion for suspended and silicon dioxide supported graphene of varying thickness. While pull-off force measurements reveal no layer number dependence for supported graphene, suspended graphene exhibits an increase...

متن کامل

Study of Nanoscale Friction Behaviors of Graphene on Gold Substrates Using Molecular Dynamics

In this paper, we investigate the friction behaviors of graphene flakes sliding on a gold substrate using molecular dynamics simulations. The effects of flake size, flake shape, relative rotation angle between flake and substrate, and crystal orientation of substrate on the friction process are thoroughly studied. It is found that under the same load, the average friction forces per atom are sm...

متن کامل

Size-Dependent Analysis of Orthotropic Mindlin Nanoplate on Orthotropic Visco-Pasternak Substrate with Consideration of Structural Damping

This paper discusses static and dynamic response of nanoplate resting on an orthotropic visco-Pasternak foundation based on Eringen’s nonlocal theory. Graphene sheet modeled as nanoplate which is assumed to be orthotropic and viscoelastic. By considering the Mindlin plate theory and viscoelastic Kelvin-Voigt model, equations of motion are derived using Hamilton’s principle which are then solved...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010